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Numerical solutions for the impulsively started spin-up from rest of a homogeneous 
fluid in a cylinder for small Ekman numbers are presented. The basic analytical theory 
for this spin-up flow is due to  Wedemeyer (1964). Wedemeyer’s solution shows that 
the interior flow is divided into two regions by a moving front which propagates 
radially inward across the cylinder. The fluid ahead of the front remains non-rotating, 
while the fluid behind the front is being spun up. Experimental observations have 
shown that Wedemeyer’s model captures the essential dynamics of the azimuthal 
flow, but that  i t  is not a quantitative model. Wedemeyer made several assumptions 
in formulating an Ekman compatibility condition, and inconsistencies exist between 
these assumptions and his solution. Later workers attempted to improve the 
analytical theory, but their work still included the same basic assumptions made by 
Wedemeyer. 

No previous work has provided a comprehensive and accurate set of three- 
dimensional flow-field data for this spin-up problem. We chose to acquire such1 data 
using a numerical model based on the Navier-Stokes equations. This model was 
first checked against accurate laser-Doppler measurements of the azimuthal flow 
for spin-up from rest. New flow-field data over a range of Ekman numbers 
9.18 x 10+ < E ,< 9.18 x are presented. Diagnostic studies, which reveal the 
various contributions to spin-up of the separate inviscid and viscous terms as 
functions of radius and time, are also presented. The plots of the viscous-diffusion 
term reveal the moving front, which is identified as a layer of enhanced local viscous 
activity. Immediately after the impulsive start, viscous diffusion is seen to be the 
major contributor to  spin-up, then the nonlinear radial advection term takes over, 
and, finally, when spin-up is well progressed, the linear Coriolis force dominates. In  
the vicinity of the front, the inward radial flow is a maximum, and the vertical 
velocity is very small. Strong radial gradients of the vertical velocity are observed 
across the front and behind the front a t  the edge of the Ekman layer, and the 
azimuthal flow behind the front shows strong departures from solid-body rotation. 
These results enable us to  fill in details of the flow not accurately given by 
Wedemeyer’s model and its extensions. 



264 J .  M .  Hyun, F .  Leslie, W .  W .  Fowlis and A .  Warn-Varnas 

1. Introduction 
Spin-up is the general process of adjustment of an initially uniformly rotating fluid 

(angular velocity a,) to an externally imposed change in the magnitude of the 
rotation rate of its container, AR = R-R,, where R is the final angular ve1ocit)y. A 
review by Benton & Clark (1974) is available for this subject. 

In  a definitive paper, Greenspan & Howard (1963) examined the spin-up of a 
homogeneous fluid occurring between two infinite rotating disks for an impulsive and 
small change in the rotation rates of the disks and hence for small values of the Rosby 
number E = AR/R. The rotation vector was taken as normal to the disks. They 
showed that the most important process controlling spin-up is the meridional 
circulation driven by Ekman layers on the endwalls. The interior fluid adjusts to the 
new rotation rate by the conservation of angular momentum and the concomitant 
stretching of vortex lines. This adjustment is substantially completed in the spin-up 
timescale 7 = rather than in the viscous diffusion timescale E-lR-l, where 
E = v/Rh2 is the Ekman number, v is the kinematic viscosity of the fluid, and h is 
the depth of the fluid between the disks. The spin-up flows caused by larger changes 
in the rotation rate of the container, in which E is no longer small, are complicated 
by nonlinear effects. However, the mechanism of the meridional circulation driven 
by Ekman boundary layers is still predominant, and the spin-up timescale is still 
given by 7 (Greenspan 1968). 

The basic analytical model for impulsive spin-up from rest of a homogeneous fluid 
in a cylinder is due to Wedemeyer (1964). Wedemeyer used an approximate method 
to formulate a single partial differential equation describing the azimuthal velocity 
in the interior. He made several assumptions when formulating an Ekman compati- 
bility condition. Wedemeyer’s solution shows that the interior flow is divided into 
two regions by a moving front, which propagates from the cylinder sidewall to the 
central axis. The fluid ahead of the front remains non-rotating, while the fluid behind 
the front is being spun up. Experimental observations have shown that Wedemeyer’s 
model captures correctly the essential dynamics of the azimuthal flow but that it is 
not accurate in detail. When the assumptions are compared with the solution, several 
inconsistencies are found. Later workers have attempted to improve the analytical 
theory, but their work has all been based on the Wedemeyer model. 

The objective of the work described in this paper was to develop a more accurate 
theoretical model of homogeneous spin-up from rest and to acquire more accurate 
data for both the azimuthal and meridional flows than had been accomplished 
previously. We decided to proceed using a numerical model and the model of 
Warn-Vernas et al. (1978) was chosen. This model was first checked by comparing 
its predictions against accurate experimental measurements of spin-up from rest 
using a rotating laser-Doppler velocimeter (LDV). For spin-up flows this procedure 
is much less tedious and can reveal more detail than an experimental measurement 
programme. 

2. Previous work 
2.1. The Wedemeyer model 

Let ( r ,  8,  z )  denote cylindrical coordinates in an inertial frame of reference, and let 
(u, w, w) denote the corresponding velocity components. We take the mid-depth plane 
a t  z = 0 so that the fluid is confined in 0 < r < a ,  -4h < z < Bh, where a is the cylinder 
radius. Working from an order-of-magnitude analysis, Wedemeyer (1964) derived the 
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following equation for the azimuthal velocity u in the interior: 

To reduce (1)  to  the one dependent variable u Wedemeyer derived an explicit 
functional relationship between u and t~ in the interior by considering the coupling 
between the interior flow and the Ekman-layer flow. To determine the Ekman suction 
effect, Wedemeyer used a linear approximation to the computations of Rogers & 
Lance (1960) for a fluid in steady solid-body rotation (a,) above an infinite rotating 
disk (a). This procedure implies the following assumptions about the spin-up flow 
(Weidman 1976a) : 

(i) the boundary-layer flow is quasi-steady ; 
(ii) the finite geometry of the cylinder does not affect the boundary-layer flux; 
(iii) the interior fluid is in solid-body rotation. 

Assumption (i) is satisfactory in view of the large difference between the Ekman-layer 
formation timescale O(n-l) and r. Assumptions (ii) and (iii) are somewhat severe and, 
as will be seen, lead to inconsistencies and inaccuracies in the Wedemeyer model. 

Wedemeyer gave the relation between u and u as 

u = B ( v - r n ) .  (2)  

Upon substituting ( 2 )  into ( l ) ,  we have 

av av v 
- + ( V - R )  -+-  =A-2,@ ~ l3T (l3R R> [yi+&($)]7 

where the non-dimensional quantities R = r /a ,  V = .v/aQ, T = t /r  and A = a/h  have 
been introduced. Equation (3) is referred to  as Wedemeyer's equation. 

In  the limit A-2@ 6 1, when the right-hand side of (3) can be neglected, 
Wedemeyer found the analytic solution 

V =  0 ( R  < e c T ) ,  (4a) 

Equations (4a, 6 )  clearly indicate that the interior flow is divided into two regions 
by a moving front located a t  R = e - T ,  which propagates from the cylinder wall 
(R = 1, T = 0) to the central axis ( R  = 0 ,  T + a). Note that, although V is continuous 
across the front, l3 V/dR is not. The angular velocity in the region ahead of the front 
(R < e - T )  remains zero. I n  the region behind the front ( R  > e - T )  the azimuthal 
velocity consists of a superposition of a time-dependent rigid rotation and a 
time-dependent potential vortex. Thus we have solid-body rotation (actually V = 0) 
ahead of the front, but we do not have solid-body rotation behind the front. This 
result is not consistent with assumption (iii). 

Substituting (4) into (2) and using the continuity equation, the vertical velocity 
w in the interior is found as 

u) = 2BS2.2 (R < e - T ) ,  (5a) 

(56) 

demonstrating that the vertical velocity is linear in z and is a step function in r ,  with 
a discontinuity a t  the front R = e - T .  It follows immediately from ( 5 )  that  the normal 
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velocity a t  the edge of’the Ekman layer a t  the bottom disk, Goo, is given by 
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6, = -BQh (R < e ~ ~ ) ,  (6a) 

~ Einh  
1c1, = ___ 

e Z T -  1 
( R  > e - T ) .  

These equations show that there is uniform, constant suction of the fluid by the 
Ekman layer ahead of the front, and uniform time-dependent blowing behind the 
front. This result is not consistent with assumption (ii) of the model. 

2.2.  Extensions of the Wedemeyer model 

Venezian (1969, 1970) returned to  Wedemeyer’s viscous equation, (3), and, by use of 
a stretched coordinate in the vicinity of the front, showed that the front is actually 
a moving layer of thickness O(@h). He gave the following approximate solution for 
the azimuthal velocity in the neighbourhood of the front : 

6’= 4I$(2ny)-i[ARexp (/3z)erfcP]-1, (7)  

where 7 = e Z T -  1 ,  Pz = A2(R2eZT- 1)2/81$y, and erfc is the complementary error 
function. 

The effect of the viscous diffusion term was also examined by Watkins & Hussey 
(1973,1977), who integrated numerically Wedemeyer’s viscousequation, (3). Watkins 
& Hussey also made measurements of the azimuthal flow during spin-up from rest 
using a stationary LDV. They compared their numerical results with their 
measurements and found good agreement. 

Watkins & Hussey compared their numerical results with Wedemeyer’s inviscid 
solution, (4), and with Venezian’s viscous solution, (7). They concluded that the 
Wedemeyer inviscid solution is valid in the limit of vanishing AP2B1, except near the 
front and at extremes of radial position (R x 1 or R x 0). Even for small values of 
A-2Ei ( x  0004), the comparisons show that the Wedemeyer inviscid solution 
deviates considerably from the numerical solution in the neighbourhood of the front. 
For the same small values of A-2,@, Venezian’s solution is shown to agree well with 
the numerical solution, not only in the neighbourhood of the front, where i t  is a 
substantial improvement over Wedemeyer’s theory, but also over a wide range of 
T and R. However, as A-2Eh increases, Venezian’s theory gives an increasingly poorer 
representation of the flow, and, for small R and large T ,  Venezian’s solution blows 
up. Comparisons of Wedemeyer’s and Venezian’s results are given in figure 1 .  

Another extension of Wedemeyer’s model was made by Weidman (1976a, b ) .  
Weidman used an accurate polynomial fit to the data of Rogers & Lance (1960) in 
formulating an Ekman compatibility condition for Wedemeyer’s equation. He found 
intersecting characteristics near the front yielding a discontinuity in v itself rather 
than az,/ar. Thus Weidman demonstrated that this approach does not improve the 
Wedemeyer model. 

2.3. A numerical model 

Numerical simulations of spin-up flows have been reported by Kitchens (1979,1980). 
who developed an axisymmetric code to solve the stream-function-vorticity form of 
the incompressible Navier-Stokes equations in cylindrical coordinates using a 
predictor-corrector multiple-iteration scheme. The grid-point distribution was opti- 
mized using coordinate transformations to resolve simultaneously details of both the 
interior and the endwall and sidewall boundary layers. To check his code, Kitchens 
made comparisons with the quasi-linear results of Warn-Varnas et al. (1978) and with 
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the experimental measurements of spin-up from rest of Watkins & Hussey (1977), 
and he obtained very good agreement. 

Kitchens presented meridional stream-function plots of homogeneous spin-up from 
rest for times shortly after the impulsive start. He found and discussed inertial 
oscillations and reverse-flow regions close to the sidewall for early times and for small 
values of A-2,!@. Kitchens also used his model to compute the Ekman-layer radial 
mass flux and he compared his results with the data of Rogers & Lance (1960). The 
agreement was not good, demonstrating the inaccuracy of the simple Ekman 
compatibility assumption. Kitchens derived a nonlinear Ekman compatibility con- 
dition. He found a monotonic relation, but he also found no unique relation that is 
valid for all A ,  E,  R and T. Kitchens’ papers do not contain flow-field data for 
intermediate and later times. He gave no data on the moving front. 

2.4. Discussion of the previous work 
The Wedemeyer model and its extensions have revealed much about the dynamics 
of spin-up from rest, but none of these models can be considered as a quantitative 
model that  is accurate throughout the spin-up process. The inconsistencies in the 
Wedemeyer model are related to the assumptions made in formulating the Ekman 
compatibility condition (2). The extensions to the Wedemeyer model do not remove 
these inconsistencies, since they are based on the same assumptions. 

The deficiencies of the Wedemeyer model and its extensions have been discussed 
by Benton (1979) I n  particular, Benton pointed to the implausibility of the vorticity 
dynamics. Wedemeyer’s solution, (4), reveals that  the axial vorticity y( = r - ld(rv) /ar)  
is zero ahead of the front and is non-zero, uniform and greater than 252 behind the 
front. Thus, although the interior azimuthal flow is less than the speed of the solid 
boundary, suggesting the use of the von Karman branch (al < 52) of the Rogers & 
Lance data, the vorticity criterion suggests the use of the Bodewadt branch (a, > 52). 
Benton concluded that the Wedemeyer model cannot be trusted in detail and that 
the use of a simple Ekman suction formula to parameterize the entire endwall 
boundary layer is inadequate. He pointed to the need to develop a nonlinear Ekman 
compatibility condition for boundary layers underlying interior flows with strong 
radial variations. This was attempted by Kitchens (1979) (see $2.3). 

3. The numerical model and its verification 
The numerical solutions for impulsive spin-up from rest were carried out using the 

code of Warn-Varnas et al. (1978). The axisymmetric incompressible Navier-St,okes 
equations in cylindrical coordinates ( r ,  19, z )  rotating with the angular velocity 52 for 
the respective relative velocity components (u, v’, w) are 

+ v  ---(ru)+ 7 , (8) a2u1 a z  
(mu)- -(uzo)+ - +2522!’--- 

at r i3r az r par  [ a r r a r  
a %,’2 l a p  a ~ a  i a  - - _ - - _  a,u 

Here p denotes the pressure (which includes the hydrostatic pressure and t>he 
centrifugal potential) and p the density. Note that the azimuthal velocity u referred 
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to in the inertial frame is related to 21' through 

21 = v '+rR.  

-- ( ru)  + - = 0. 
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The continuity equation is i a  aw 
r ar aZ 

The initial conditions for the fluid are 

u = w = 0, 21' = -rL? ( t  = 0). (13) 

(14a) 

(146) 

The boundary conditions on the cylinder wall and on the bottom and the top disks 
are 

u = 2,' = w = 0 

u = U' = U I  = 0 

( r  = a ) ,  

(Z  = k i h ) .  

To satisfy numerical stability requirements, the boundary conditions a t  the central 
axis are applied a t  a small, bu t  finite, radius ( r  = r i ) :  

(15) 
aw 
ar 

u=O,  v ' = - r i Q ,  - = 0 ( r  = ri). 

3.1. Numerical simulation technique 

Equations (8)-( 12) and the initial and boundary conditions were finite-differenced 
on a staggered mesh. To resolve the thin Ekman boundary layers (of thickness O ( B h ) )  
near the endwalls the grid was stretched in the z-direction. This stretching was 
accomplished by the use of the function 6 = tanh (z/zb), where zb is a parameter that 
controls the stretching. The grid spacing was uniform in the r-direction in order to 
resolve better the moving front (of thickness O(@h)) in the interior. Actual 
computations were performed on a 42-by-42 grid in the full domain. The dependent 
variables were distributed over the staggered grid (see figure 2 of Warn-Varnas et al. 
1978). The pressure was found from the Poisson equation obtained by taking the 
divergence of (8) and (10). This equation is 

-- - -VZp+C, aD 
at 

where C denotes the combined divergence of the advection and Coriolis terms in the 
u- and w-equations. D is the divergence (V . u). which is small but, owing to machine 
round-off errors, not zero. This equation was solved by an AD1 iterative approach. 
For further details on the numerical techniques, see Warn-Varnas et al. (1978). 

3.2. J'eriJication of the numerical model 
The numerical model adopted has been verified previously for quasi-linear, homo- 
geneous and stratified spin-up flows (see Warn-Varnas et al. 1978; Hyun, Fowlis & 
Warn-Vernas 1982). These verifications were made by checking the model predictions 
against accurate rotating LDV measurements. This method was used again in this 
study to verify the code for the strongly nonlinear problem of spin-up from rest. 

The experimental apparatus consisted of a Plexiglas, cylindrical container (radius 
a = 10.15 cm, height h = 10.05 cm), mounted on a precision-rate turntable with its 
axis of symmetry maintained vertical and made coincident with the rotation axis. 
The container was filled with water, with kinematic viscosity v = 9.3 x lop3 cm2 s-l. 
Azimuthal-flow measurements were made with an LDV system, mounted on the 
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turntable. The optical arrangement of this system is illustrated in Warn-Varnas 
et al. 

Note that the numerical simulations and the laboratory experiments were not 
performed for identical conditions; several small differences did exist. For the 
simulations, the change in rotation rate was effectively instantaneous; but, for the 
experiments, there were small time delays due to  the inertia of the turntable. The 
simulations were carried out with ri = 0.01 cm (equation (15)). Warn-Varnas et al. 
showed that an  increase of ri to  0 1  cm made no difference to  the results in their 
investigation. 

Figure 1 is a typical set of comparisons of numerical results with LDV measurements 
for spin-up from rest. The experimental parameters and non-dimensional parameters 
are given in table 1 under run number N3. The plots show scaled non-dimensional 
azimuthal velocity v/ rQ versus non-dimensional time T .  Wedemeyer's inviscid 
solution, (5), and Venezian's solution, (7) ,  are also shown. The radial positions of figure 
1 are a t  ( a )  r / a  = 0.75 and ( b )  r / a  = 0.50. Excellent agreement between the numerical 
results and the measurements is apparent. Many other comparisons, which are not 
shown, gave similar agreement. Clearly, the code accurately simulates the flow and 
the small differences between the numerical model and the experiments do not 
produce significant differences in the results. 

Rotation Ekman 
Run Radius Height rate number Et n2a 

number a (cm) h (cm) R (s-l) E @((h/a)2 7 (9) (cm s - ~ )  

N1 1014 1005 021 1 4.36 x lop4 2.05 x lo-' 227.0 9.4 x 10-3 
N2 1014 1005 1.002 918 x 9.41 x lop3 104.2 9.8 x 10-2 
N3 1014 10-05 3.487 2-63 x 504 x 5592 6 3  x lo-' 
N4 1014 31.78 1.002 9.18 x lo-'' 2.98 x lo-' 329.4 3.1 x lob2 
N5 1014 3.178 1.002 9.18 x 2.98 x 32.94 3.1 x lo-' 

TABLE 1. Parameters for numerical calculations, v = 9.3 x cm2 s-l 

4. The numerical solutions 
The results of numerical simulations for four cases of spin-up from rest in a cylinder, 

which are typical of laboratory experiments, are presented in this section. All the 
relevant experimental and non-dimensional parameters are listed in table 1. To 
identify the dynamical processes at work in the vicinity of the front and elsewhere, 
profiles of selected linear, nonlinear, and viscous terms, as well as the velocity 
components, were computed. 

4.1. Diagnostic s t d i e s  and #ow Jields 
Noting that the dominant flow is in the azimuthal direction and that the azimuthal 
velocity is vertically uniform in the interior for the small Ekman numbers considered 
in this paper, diagnostic studies of the terms on the right-hand side of the azimuthal 
momentum equation (9) were made for one vertical level only ( z / h  = -007). The first 
four terms on the right-hand side of (9) are due to the inviscid dynamic effects. They 
are respectively : radial advection, vertical advection, curvature effect and Coriolis 
acceleration. The fifth term on the right-hand side of (9) denotes viscous diffusion 
effects. 
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FIGURE 1 .  Azimuthal velocities for run N2. The ordinate denotes the scaled azimuthal velocity in 
an inertial frame. The abscissa denotes the scale time T = t / ~ .  -.-, Wedemeyer's inviscid 
solution; -, numerical resplts; . . ., LDV measurements; ----, Venezian's profile. The vertical 
location is at mid-depth. The radial locations R are (a)  0 7 5 ;  (b )  0 5 .  
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FIGURE 2(a) .  For caption see p. 275. 

The results are displayed in figures 2 and 3 as radial profiles for separate times of 
the individual dynamic effects that  make up the azimuthal acceleration, av‘ldt. The 
values of each term are measured in units of &R2, which scales the time acceleration 
av’lat. Notice the differences in scale in the ordinates in the figures. I n  figures 2 and 
3 the top plots show the radial profiles of the four individual inviscid terms. Note 
that the plot of the Coriolis acceleration may also be interpreted as the radial-velocity 
plot with the factor -252, since to  leading order the radial velocity u is also 
independent of the depth. These Coriolis-acceleration plots are used to determine u 
in the interior. The middle plots compare the combined inviscid effect, the sum of 
the preceding four terms, with the viscous-diffusion effect. 

In  figures 2 and 3 the bottom plots display the radial profile of the scaled 
non-dimensional azimuthal velocity vlrR in the inertial frame (note that v = v’ +rR).  
Wedemeyer’s inviscid solution, (4), is also shown. The azimuthal-flow data are 
included with the diagnostic study plots to  reveal the relative phases between the 
arrival of the front and the changes in the dynamic effects. Figure 4 shows the 
dynamic effects and flow profiles for larger times when the central core has been 
substantially spun up. Figures 5 and 6 show the scaled non-dimensional vertical 
velocity, w/(vR)a, as a function of height for the lower half of the cylinder and for 
specific times. The radial variation is shown by separate curves on each graph. The 
results in figure 4 are for the same numerical simulation as the results in figure 2 ,  
namely run N1; the results in figures 5 and 6 are for the same simulations as the 
results in figures 2 and 3, namely runs N1 and N3 respectively (see table 1). 
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0 0.5 1 .O 
rla 

(b ) 

FIQURE 2 ( b ) .  For caption see p. 275. 

4.2. General properties of the $ow 

Since the spin-up flow is symmetric about the mid-depth plane, z = 0, the ensuing 
discussion is concerned with the flow in the lower half of the cylinder only. 

Consider the region far ahead of the front. The azimuthal velocity with respect to 
the inertial frame is zero, v’ = -rR; the radial velocity component u is inwards 
(figures 2 and 3, the top plots); and the vertical velocity component is downwards 
(figures 5 and 6). Clearly, fluid is sucked into the Ekman layers, and, to satisfy 
continuity, fluid moves inwards and downwards in the interior. The viscous-diffusion 
term in (9) is identically zero. The nonlinear advection terms in (9) reduce to 

(: 23 i a  
- --(mu’) = rR - + - , 

r ar 

a aw 
aZ ar 

- - (v’w) = rR-. 
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(C) 

FIQURE 2(c) .  For caption see p. 275. 

Since u = 0 on the symmetry axis and since u has a maximum negative value in the 
interior, (16) indicates that  the radial-advection term should be negative. Since a t  
mid-depth w = 0 because of symmetry and, consequently, aw/& > 0, (17)  indicates 
that the vertical-advection term should be positive. The curvature term -v’u/r 
should be negative. The results in the top plots of figures 2 and 3 are consistent with 
these conclusions. The inviscid terms add up to zero ; so there is no spin-up ahead 
of the front. The vertical velocity w is independent of the radial location, indicating 
a uniform Ekman suction (see curves ( a )  and ( b )  of figure 5 ) .  In  the interior, a linear 
dependence of w on z is apparent, and the edge of the Ekman layer where the suction 
is greatest (w = Gm, see $3) can be easily identified. 

As the fluid begins to spin up upon the arrival of the front, the flow field changes, 
and some of the terms undergo rapid variations. The inwards radial velocity -u 
approaches a maximum value and then decreases, while w goes to  zero and then 
becomes upwards. The middle plots of figure 2, for intermediate times when the front 
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(4 
FIGURE 2(d) .  For caption see facing page. 

has propagated into the interior, show that the viscous-diffusion term increases from 
zero, reaches a maximum, and then decreases (e.g. figure 2 ( c ) ) .  This region 
of enhanced viscous activity reveals the thickness of the front. Inspection of 
the viscous-diffusion plots gives the thickness O(E)h),  which is consistent with the 
analytical result of Venezian (see 52.2). Changes in the advection terms across the 
front are also noticeable. The value of the radial advection term changes from a 
negative minimum a t  the leading edge of the front to a positive maximum a t  the 
trailing edge. A similar observation, but with reversed signs, can be made for the 
radial profile of the vertical-advection term. 

Finally, consider the region between the front and the sidewall. Again, the radial 
velocity is inwards and decreases to zero a t  the sidewall, and ul is upwards. Figure 
2 (a)  shows that, for very early times, the viscous-diffusion term is strong in a single 
region close to the sidewall. For intermediate times, figures 2 and 3 show that the 
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FIGURE 2 .  The ton and 

1 I I 
0 0.5 1 .o 

r la 

( e )  

middle plots show the radial profiles near mid-depth of each term on 
the right-hand sidi of (2) for run NI. In  the top plot: --;radial advection; - - -  -, vertical advection; 

, Coriolis acceleration ; --, curvature effect. In  the middle plot: -, the sum of the above four 
terms; - - - -, the viscous-diffusion term. The ordinates of the top and the middle plots are in units 
of EiQ2a. In the bottom plot: -, the numerical results; - - - -, Wedemeyer’s inviscid solution. The 
ordinate of the bottom plot denotes the scaled azimuthal velocity on the inertial frame. Times T 
are (a )  0053; ( b )  0.158; (c) 0.317; ( d )  0.634; ( e )  0.952. 

viscous term reaches a minimum behind the front and then increases again close to 
the sidewall (see figures 2 6 ,  c ) .  This indicates the presence of a viscous boundary layer 
on the sidewall. For later times, when the fluid near the sidewall is almost completely 
spun up, this sidewall layer vanishes (see figures 2 d ,  e ) .  The magnitude of w behind 
the front increases with r until the sidewall boundary layer is reached, over which 
uj decreases to zero on the sidewall. I n  general, w in the interior region behind the 
front is less linear in z than in the region ahead of the front. The preceding results 
are consistent with the following picture of the evolving flow given by Benton & Clark 
(1974). Strong nonlinearity causes the Ei layer of linear theory to break away from 
the wall and propagate into the interior as the moving front; an ,!6 layer remains 
behind to reduce the vertical velocity to  zero. 

In  general, behind the front both the radial advection and vertical advection vary 
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FIGURE 3. Same as in figure 2, but for run N3 at T = 0.321. 

monotonically to  zero on the sidewall. However, in figure 3 the radial advection and 
the vertical advection undergo rapid changes in early times close to the sidewall. This 
point will be further discussed in $4.3. 

Throughout the spin-up motion, figures 2 and 3 show that the Coriolis acceleration 
-2Ru increases from zero on the axis to  a maximum in or near the frontal region 
and then decreases to zero at the sidewall ; while the curvature term - v u / r  decreases 
from zero on the axis to  a minimum in or near the frontal region and then decreases 
to  zero on the sidewall. Figures 5 and 6 show that w is very small in the frontal region. 
These results imply that the meridional flow within the front is predominantly in the 
radial direction. Note also that, for intermediate times, in the region between the 
front and the sidewall, the combined dynamic effects still produce a relatively large 
positive value of the fluid acceleration. This indicates that  spin-up is continuing in 
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FIQURE 4. Flow behaviour of run N1 at large times. In the top plot: -, the sum of the inviscid 
terms; - - - -, the viscous-diffusion term. The ordinate of the top plot is in units of E b * a .  The bottom 
plot shows the scaled azimuthal velocity: -, numerical results: - - - -, Wedemeyer’s inviscid solution. 

W l W ) +  

FIGURE 5. Plots of the vertical velocity w for run N1 at T = 0317. The radial locations R of the 
curves are (a) 033;  ( b )  040; ( c )  0 6 0 ;  ( d )  065; ( e )  070; (f) 080: (9) 0925; (h)  0975. 
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FIGURE 6. Plots of the vertical velocity w for run N3 a t  T = 0545. The radial locations R of the 
curves are (a )  0 4 ;  (b )  0.5;  ( c )  0.6; (d) 0.7; ( e )  0 8 ;  (f) 09. 

this region. In  general, the azimuthal acceleration has its maximum value just to  
the rear of the front. 

Figure 2 shows the changes in the relative contributions of the different terms to 
the spin-up process over the time interval 7. Immediately after the impulsive start, 
viscous diffusion near the sidewall is the major contributor to spin-up, then the 
nonlinear radial advection term takes over. Eventually for T 2 0.5, as the flow 
gradients weaken, the linear Coriolis force dominates. 

Figure 2 ( e )  shows that, even after T z 1 ,  the central core of fluid near the axis is 
only slightly spun up. To investigate further the spin-up process in this region, run 
N1 was extended to longer times. Figure 4 shows that for T = 2-02, v/rO 2 0.9, and 
the central core is substantially spun up. Further, a t  this time, the Coriolis force still 
dominates the spin-up process ; viscous effects are small, which is what we expect since 
the fluid is close to solid-body rotation. 

4.3. Effects of the experimental parameters 
The non-dimensional Ekman-layer thicknesses (S/h = I&) for runs N1 and N3 are 
0.021 and 0.0096 respectively. These different thicknesses are clearly revealed by 
comparing figures 5 and 6. A similar comparison was attempted for the thicknesses 
of the propagating front and the stationary sidewall layer, as revealed by the 
viscous-diffusion terms in the middle plots of figures 2 and 3. The impression gained 
is that,  unlike the Ekman layer, the propagating front thickens with time, but the 
sidewall layer maintains a constant thickness (see figures 2 b-d).  No obvious difference 
in the frontal thickness is apparent between the two runs, but this is hardly surprising 
since a does not vary by much. To study these boundary-layer thicknesses further, 
data with more resolution in space and time are required. 

is a more relevant parameter for Watkins & Hussey (1977) suggested that 
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the spin-up flow than E. Runs N4 and N5 were performed for different selected 
cylinder depths, so that comparison could be made for similar values of A-2@ and 
different values of E (see table 1 ) .  Such comparisons between the results of N1 and 
N4 and the results of N3 and N5 for similar values of T and AP2l&, which are not 
shown in this paper, are in strong agreement with the suggestion. 

In  figure 3 the radial and vertical advection terms undergo rapid change close to 
the sidewall. The variations of the advection terms are similar to their variations 
across the front. These results, observed when strong inertial effects are present 

4 l ) ,  are almost certainly related to the regions of reversed flow and inertial 
waves found by Kitchens (1980) for similar times, locations, and parameters (see 
52.3). 

We now define the arrival time of the front (non-dimensionalized by T ) ,  Tf as the 
time for the azimuthal velocity v to reach 0-05rC2, and a spin-up time (similarly 
non-dimensionalized) Th as the time for v to reach 0.5rCi. I n  figure 7, we plot Tf and 
Th as functions of A-2@ for the experiments listed in table 1. Two radial positions 
R = 0.788 and 0-388 are considered. Also plotted in figure 7 are available data from 
Watkins & Hussey (1977), Wedemeyer’s inviscid solution, (4), and measurements of 
Weidman (19766) for nearly impulsive spin-up from rest. 

Figure 7 reveals a systematic dependence of Tf and Th on A P 2 B  for the results from 
our numerical model. (Table 1 shows no such dependence on E . )  The values of Th from 
the measurements of Watkins & Hussey show values consistent with our results. 
However, the values of Th from the computations by Watkins & Hussey based on 
Wedemeyer’s viscous equation, (3), are not in such good agreement with our results. 
The predictions of Wedemeyer’s solution also show discrepancies. Weidman’s data 
were interpolated to give values of Tf and Th for R = 0388 and 0788. For R = 0.788 
the agreement is good, but for R = 0388 i t  is poor. I n  his experiments Weidman 
observed turbulent flow near the sidewall a t  the early stages of spin-up. This is not 
surprising since he used a large value of C 2 (  = 108.7 s-l). The faster times for R = 0788 
are almost certainly due to the turbulence. We conclude that A-2,?$ is a good 
parameter for collapsing data for the spin-up flow. 

5.  Conclusions 
The impulsive spin-up from rest of a homogeneous fluid in a cylinder for small 

Ekman numbers has been investigated numerically. The numerical simulations 
employed finite-difference techniques on the Navier-Stokes equations in axisym- 
metric form. The numerical model was thoroughly checked by comparing its predic- 
tions against accurate measurements of the azimuthal flow for spin-up from rest, 
made with a rotating laser-Doppler velocimeter. Excellent agreement was obtained. 

New, three-dimensional flow-field data from a . range of Ekman numbers 
9.18 x < E Q 9.18 x lop4 are presented. The data enable us to fill in the details 
of the azimuthal and meridional flows not accurately given by the Wedemeyer model 
and its extensions. Diagnostic studies of the azimuthal momentum equation in the’ 
interior were made. These studies show the contributions to spin-up of the separate 
inviscid and viscous terms as a function of radius and time. The moving shear- 
discontinuity front of Wedemeyer’s inviscid solution is shown to be a propagating 
layer of enhanced local viscous activity. The thickness of the front is seen to be 
consistent with Venezian’s (1970) analysis. Ahead of the front, both the combined 
inviscid dynamic effect and the viscous-diffusion effect are zero ; there is no spin-up 
until the arrival of the front. Across the front some of the terms undergo rapid 
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FIGURE 7. Plots of the non-dimensional arrival time of the front T, shown in (a), and the half-time 
Th shown in (b), as functiomns of K2&. Wedemeyer's inviscid solutions, (4), are shown on the 
ordinate. In (b), D denotes the experimental data of Watkins & Hussey at R = 0395, and A 
denotes the results of their computations of Wedemeyer's viscous equation, (3), a t  R = 0805. The 
measurements by Weidman are shown by 0 for R = 0388 and for R = 0.788. 

variations. In  general, the azimuthal acceleration has its maximum value just to the 
rear of the front. Behind the front, the terms vary less rapidly; the viscous effect 
decreases but then increases again in the sidewall boundary layer. 

Immediately after the impulsive start, before the Ekman layers have had a chance 
to form, viscous diffusion at the sidewall is the major contributor to spin-up. Then, 
when the Ekman flux is established, the nonlinear radial advection term takes over. 
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As spin-up progresses, the strength of the nonlinearity and consequently the strength 
of the front diminish. At large times, the linear Coriolis acceleration becomes the 
dominant term. 

In  the interior, the meridional circulation is everywhere radially inwards. Ekman 
suction causes the fluid ahead of the front' to be drawn into the Ekman layer and 
the fluid behind the front to  be blown out of the Ekman layer. At the core of the 
front, the magnitude of the inwards radial flow is a maximum, and the vertical velocity 
is very small. Strong radial gradients of vertical velocity are observed everywhere 
a t  the edge of the Ekman layer, except far ahead of the front, and the azimuthal flow 
behind the front shows strong departures from solid-body rotation. 

These results show that the Wedemeyer model describes the flow accurately in the 
region ahead of the front. However, in the vicinity of the front and behind the front, 
the assumptions made by Wedemeyer are not accurate and his model is less 
quantitative. 
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